Standardisation needs and testing methods for multiple-outlet chargers

Klaus Kersting, Product Manager EV/HEV, Applus IDIADA

July 2014
IDIADA company introduction

Automotive service provider for:

- Engineering
- Testing
- Homologation
EV technology demonstrators
Charging process: safe, fast and compatible

Charger tests with innovative EV simulator

Ensure safe charger operation will following concepts:
- Automatic test procedure, logging, analysis
- Testing with a battery simulator. Advantages:
 - Abnormal failures, different voltage levels
 - Continuous tests with battery simulator, never “full”
 - Repeated test under same conditions
- Experience from more than 120 charger tests realized

IDIADA is only European CHAdeMO certification body

Charger interface development

Consulting to automotive OEMs or suppliers in order to:
- Develop software, electronics or layout for
 - AC charging interfaces (type 1, type 2)
 - CHAdeMO 0.9 and 1.0
 - Combo 1 and Combo 2 (DIN70121)

for safe operation according IEC61851, ISO15118 and DIN70121
- Communication with BMS and integration into vehicle E/E
Summary

01_ Introduction IDIADA

02_ Background charging technology / standards

03_ Multi-outlet charging stations / testing methods

04_ Conclusions
In Spain around 83% of the people might be willing to consider to buy an electric vehicle, but…

What is the **minimum range** that an electric vehicle would need before you would consider buying or leasing it?

➔ **Expectations and reality don’t match**
(Leaf, i3, e-Golf, e-up!, ZOE, iMiEV, smart ED)

Considering your expected vehicle use, what is the **longest time to fully recharge** the battery that you would consider acceptable when buying or leasing an electric vehicle?

➔ **fast charge infrastructure necessary**

Source: Unplugged: Electric vehicle realities versus consumer expectations *(based on a data analysis of all 13,000 individual responses to the survey)*
Charging standards: installed charging stations in Europe:
- CHAdeMO: 1,181 (02.07.2014)
- CCS: (no reliable numbers, probably < 100)
 - Fastned has plans to install multi-outlet stations on 200 locations in Netherlands
 - SLAM project will install 400 CCS-only chargers in Germany up to 2017
 - supported by EU via CPT directive → CCS in all fast chargers in Europe!

But:
Tesla is following own charger specification: “superchargers”:
- closed specification, collaboration discussion with BMW
- 120kW max power → more range per hour of charge
- no user fee for Tesla owners
- so far 24 installed in Europe, many more announced for 2014 and 2015

Due to higher vehicle range higher area coverage with less chargers!
<table>
<thead>
<tr>
<th>Specification/Standard</th>
<th>Description</th>
<th>CHAdeMO</th>
<th>DC CCS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAdeMO</td>
<td>Technical specs of quick charger for EV</td>
<td>X</td>
<td>-</td>
<td>Confidential from CHAdeMO association</td>
</tr>
<tr>
<td>IEC61851</td>
<td>Electric vehicle conductive charging system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part 1</td>
<td>General requirements</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Part 23</td>
<td>DC electric vehicle charging station</td>
<td>X</td>
<td>X</td>
<td>Annex C C (CCS) Annex A A (CHAdeMO)</td>
</tr>
<tr>
<td>Part 24</td>
<td>Digital Communication (DC CCS)</td>
<td>-</td>
<td>X</td>
<td>Currently covered by DIN70121</td>
</tr>
<tr>
<td>DIN70121</td>
<td>Digital Communication (DC CCS)</td>
<td>-</td>
<td>X</td>
<td>No international standard</td>
</tr>
<tr>
<td>ISO/IEC15118</td>
<td>Vehicle to grid Communication Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part 1</td>
<td>General information and use-case definition</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Part 2</td>
<td>Network and application protocol requirements</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Part 3</td>
<td>Physical and data link layer requirements</td>
<td>-</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IEC61980</td>
<td>Wireless Power Transfer for EVs</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
01_ Introduction IDIADA

02_ Background charging technology / standards

03_ Multi-outlet charging stations / testing methods

04_ Conclusions
• Developed upon market demand:
 - charging station operators need to serve all EV users
 - no big cost increment for MO charging stations (< 10%)

• Most new installations are multi-outlet

But: No regulations regarding safety, compatibility and usability
Multi-Outlet charging stations

- Standards
 - Safety
 - Compatibility
 - Easy usability

- Current charging stations use the same power unit for CCS and CHAdeMO charging
 - Ensure that DC-outlets which are not in use are de-energized
- During charge of DC outlet 1 a second user might want to initiate the payment and charge of outlet 2
 - Currently not possible due to details in CCS and CHAdeMO
- User experience should match the behaviour among different charging stations

Standardization necessary
Possible types of Multi-Outlet charging stations

- 1 DC and 1 AC outlet → already on the market

- 2 different DC outlets,
 - only one can be used at the same time → already on the market
 - both can be used at 50% → not yet
 - both can be used according to demand → not yet

- 2 different DC outlets + 1 AC,
 - 1 DC and 1 AC can be used in parallel → already on the market

- More than 2 DC outlets of the same type,
 flexible power sharing between outlets → not yet

- ...
Testing methods

- Detection of vehicle specific incompatibilities:
- Detection of unexpected behaviour in abuse operation.
- Charging current waveform from on-board charger.
- Real ripple waveform in DC charging

- Automatic testing procedure
 - repeatability, less manual operation
- Long time testing
 - durability and temperature test
- Simulation of different EV characteristics
 (timings, CAN messages, voltage levels, capacities)
- Multi-standard capability within one test machine
EV charging simulator – HW overview

- CAN buses
- DC power
- AC power
- Analog & PLC communication
- Analog signals
- Digital signals
- USB

→ Combo type 1
→ Combo type 2
→ CHAdeMO
Test requirements workflow for available standard

- Requirement is identified from the standard
- New test item is added in the checksheet
- New simulator test is configured in specific user-friendly language
- Logging data is generated for further analysis
- Requirement is tested with EV Simulator
Summary

01_ Introduction IDIADA

02_ Background charging technology / standards

03_ Multi-outlet charging stations / testing methods

04_ Conclusions
Specifications in place for any single charging standard

Definition of test specifications for CCS still ongoing

No specifications for multi-outlet charging stations
For further information:

Applus IDIADA
Main Technical Centre
L’Albornar – PO Box 20
E-43710 Santa Oliva (Tarragona) Spain
T +34 977 166 000
F +34 977 166 007
e-mail: idiada@idiada.com

www.idiada.com